

Philadelphia University Faculty of Engineering Department of Computer Engineering First Semester, 2011/2012

Course Syllabus

Course Title: Programming Language	Course code: 630203				
Course Level: second year	Course prerequisite (s) and/or corequisite (s):				
	computer skills (2)				
Class Time: 12:10-13:10 Sun, Tue, Thu (s2)	Credit hours: 3				

Academic Staff	
Specifics	

Nama	Rank	Office Number and	Office	E-mail Address
Name	Kalik	Location	Hours	E-man Address
Dr. Qadri Hamarsheh	Assistant professor	E712	11:00-12:00 (Sun-Tue- Thu)	

Course description:

This course introduces the basic principals of structured programming. Students will learn and practice the application of these programming principles to the solution of engineering problems using the C++ high-level programming language.

Course objectives:

Upon completing this course the student should be able to:

- Understand the programming fundamentals.
- Develop algorithms.
- Understand and write searching and sorting algorithms.
- Use Functions, strings and pointers.

Course components

Textook: C++ Programming From Problem Analysis To Program Design, Fifth Edition, D.S. Malik, Course Technology, 2011.

Teaching methods:

Classes: three lectures per week Tutorial: one hour per week (optional) Homework: 7-8 homework assignments

Learning outcomes: upon completing this course, the student should have: -

• Knowledge and understanding

- Have an understanding of the main programming constructs of C++
- Have an understanding of the role of design in the development of programming solutions to problems
- Have knowledge of some standard algorithms and data structures

• Cognitive skills (thinking and analysis).

- Develop the ability to analyze problems and propose algorithms to solve them

• Practical and subject specific skills (Transferable Skills).

- be able to write computer programs to solve practical engineering problems
- be able to design efficient computer programs to solve practical engineering problems

Cours	Course Intended Learning Outcomes												
A - Knowledge and Understanding													
A1.	A2.	A3.	A	4.		A5.		A6	•	A	7.	A	A8.
B - Inte	llectual	Skills											
B1.	B2.	В3.	B4.		B5.		B6.		В7.		B8.		B9.
C - Pra	C - Practical Skills												
C1.	C2.	C3.	C4.	C5.	(C6.	C	7.	C8		C9.		C10.
D - Transferable Skills													
D1.	D	2.	D3.		D4.		D	5.		D6.		I	D7.
													_

Assessment instruments

Allocation of Marks				
Assessment Instruments	Mark			
First examination	20			
Second examination	20			
Final examination: 50 marks	40			
Reports, research projects, Quizzes, Assignments, Projects	20			
Total	100			

Documentation and academic honesty

• Avoiding plagiarism.

Any student caught cheating or copying home work will be punished according the code of conduct and policies used in the faculty of engineering.

Course academic calendar

	Basic and support material to be covered		
week			
(1)	Introduction to computers and programming		
(2)	Inroduction to C++, Input / Output commands.		
(3)	Memory concepts, Arithmetic & relational operators		
(4)	Control statements I : If & Ifelse & switch statments		
(5)	Control statements II: for loop		
(6)	Control statements III: while & do while loops		
First exam.			
(7)	Functions I, defenition + examples		
(8)	Functions II, function overloading		
(9)	Functions III, recursion		
(10)	Arrays I, defenition + examples		
(11)	Arrays II, examples: Searching		
Second exam.			
(12)	Arrays III, sorting and multidimensional arrays		
(13)	Pointers I, defenition, pointer operators		
(14)	Pointers II, const with pointers + function pointers		
(15)	Pointers III, String function		
(16)	File processing		
Final Examination			

Expected workload:

On average students need to spend 2 hours of study and preparation for each 50-minute class/tutorial.

Attendance policy:

Absence from classes and/or tutorials shall not exceed 15%. Students who exceed the 15% limit without a medical or emergency excuse acceptable to and approved by the Dean of the relevant college/faculty shall not be allowed to take the final examination and shall receive a mark of zero for the course. If the excuse is approved by the Dean, the student shall be considered to have withdrawn from the course.

Course references

Books

References:

- C++ How to program, By: H.M.Deitel and P.J. Deitel, 5th ed. Prentice Hall.
- Richard Halterman, "Fundamentals of Programming: An Introduction to Computer Programming Using C++" 1995
- Jofel Adams, Sanford Leestma, and Larry Nyhoff, "Turbo C++: An introduction to computing" Prentice-Hall, 1996.

Websites

The C++ resource network: http://www.cplusplus.com
Textbook hompage: http://www.deitel.com/books/cpphtp5

Free C and C++ resources: http://www.freeprogrammingresources.com/freetutr.html